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Abstract-The competition between brittle and ductile modes of failure is analyzed in a double
edge-cracked specimen impacted by a projectile on the cracked side. Full transient analyses under
plane strain conditions are carried out, with impact simulated by an imposed nonnal velocity with
a small rise time. The material response is characterized by an elastic-viscoplastic constitutive
relation for a porous plastic solid, with adiabatic heating due to plastic dissipation and the resulting
thermal softening accounted for. The onset of cleavage is assumed to occur when a critical value of
the maximum principal stress is attained. Effects of varying the loading rate and the thermal
softening characterization of the material are explored. If the thermal softening rate is sufficiently
high, a transition from a brittle failure mode at low loading rates to a ductile failure mode at high
loading rates is found, which is quite the opposite of the usual brittle-ductile transition behavior.
This prediction for the fracture mode transition is consistent with experimental observations under
these loading conditions. Additionally, the failure paths indicated by the calculations are consistent
with what is seen in experiments. The mechanism precipitating the brittle-ductile transition is a
greater increase in peak strain magnitude than in peak stress magnitude with increased loading rate.
When the strains ahead of the crack tip become large enough, thermal softening and possibly
porosity-induced softening can lead to a localization of deformation, which limits the peak value of
the maximum principal stress so that cleavage does not occur and the failure mode is ductile.

I. INTRODUCTION

A numerical procedure for the analysis of dynamic crack growth in elastic-plastic solids
has been developed by Needleman and Tvergaard (1991 a,b) based on the failure predictions
of a porous plastic material model that represents ductile fracture by the nucleation and
subsequent growth of voids to coalescence. In this procedure the computed crack growth
paths and speeds rely entirely on the failure predictions of the material model. The material
model used is elastic-viscoplastic with a temperature-dependent flow strength, and thermal
softening due to adiabatic heating is accounted for. Recently, the computational method
has been extended also to account for crack growth by cleavage fracture, in order to study
the brittle-ductile transition (Tvergaard and Needleman, 1993). The method has been used
to analyze a double edge-cracked specimen under axial loading (Needleman and Tvergaad,
1991a,b), or a single edge-cracked specimen that models experiments ofPrakash and Clifton
(1992), Tvergaard and Needleman (1992, 1993). For both specimens crack growth occurs
under pure mode I or nearly pure mode I conditions.

A length scale has been introduced into the elastic-viscoplastic porous ductile material
model by representing two populations of second phase particles; large inclusions with low
strength, which result in large voids near the crack tip at an early stage, and small particles,
which require large strains before cavities nucleate. For the larger voids the size and spacing
are explicitly specified, whereas no length scale is specified for the small scale voids. The
mesh-sensitivity of the dynamic crack growth predictions has been studied by Needleman
and Tvergaard (1994). Cases where the large scale voids dominate show practically no
mesh sensitivity, while a clear mesh sensitivity is found for cases dominated by the small
scale voids. The initiation of crack growth is quite sensitive to the mesh for initially sharp
cracks, whereas this sensitivity is removed for initially blunt cracks.
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An experimental technique for subjecting edge cracks in plate specimens to high rates
of shear loading (near mode II conditions) has been proposed by Kalthoff and Winkler
(1988) and Kalthoff (1988). The method relies on impacting a plate by a cylindrical
projectile between two parallel edge cracks. In experiments on a high-strength steel it was
observed that at low impact velocities a brittle cleavage fracture occurred, whereas at
sufficiently high impact velocities the failure involved shear localization leading to ductile
fracture. The same fracture mode transition has been observed by Ravi-Chandar (1994) in
polycarbonate using a loading arrangement like that described by Kalthoff (1988), but with
a single edge-cracked specimen. Experiments with the single edge-cracked specimen focusing
on shear band propagation in a high-strength steel are described by Mason et al. (1994).
The fracture mode transition observed by Kalthoff and Winkler (1988) and Ravi-Chandar
(1994) is, of course, the opposite of the usual brittle-ductile transition behavior.

An elastic analysis of wave propagation in the Kalthoff (1988) specimen has been
carried out by Lee and Freund (1990), to study the combination of transient mode I and
mode II deformation fields near the initial crack tip. The predicted time development of
the mode II stress intensity factor was in reasonable agreement with the shadow optical
measurements of Kalthoff (1988). In addition, the development of a compressive mode I
stress intensity factor was predicted. Finite element analyses of the evolution of the ductile
failure mode were reported by Zhou et al. (1994).

In the present paper, the competition between the brittle and ductile modes of failure
in the Kalthoff (1988) specimen is analyzed using the elastic-viscoplastic porous material
model with thermal softening, and incorporating a simple cleavage fracture criterion. Both
low and high impact velocities are considered, and the predictions for initial failure are
compared with experimental observations.

2. PROBLEM FORMULAnON AND SOLUTION PROCEDURE

Here, as in previous studies [e.g. Needleman and Tvergaard (l991a,b); Tvergaard
and Needleman (1993)], a convected coordinate Lagrangian formulation is used with the
dynamic principle of virtual work written as

with

f f f
(';2Ui

,u15EudV = T15uidS- p-.215uidV
v s v at

(1)

(2)

(3)

where ,'I are the contravariant components of Kirchhoff stress on the deformed convected
coordinate net, vj and Uj are the covariant components of the reference surface normal and
displacement vectors, respectively, p is the mass density, Vand S are the volume and surface
of the body in the reference configuration, and ( ),i denotes covariant differentiation in the
reference frame.

The computations are carried out for the configuration shown in Fig. I. This is a two­
dimensional plane strain model of the specimen developed by Kalthoff (1988). A Cartesian
coordinate system is used as reference, with the /_y2 plane being the plane of deformation.
The specimen dimensions are taken as 2L = 0.2 m and b = 0.1 m, the initial crack length
is a = 0.05 m, and the distance between the two cracks is 2h = 0.05 m. The crack is taken
to have a semi-circular tip, with initial opening, 15, = 70 Ilm [as indicated on the mesh plot
of Fig. 3(b)]. Symmetry about the i-axis is assumed, so that the boundary conditions on
the region analyzed numerically are
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Fig. I. Geometry of the shear loaded cracked specimen.

(4)

U I = fv(t) dl, T 2 = 0 on / = -(/ and 0 ~ y2 ~ (h-fJ rI2), (5)

where V(t) is given by

and

for I ~ I r ;

for Ir < I.
(6)

(7)

on all remaining surfaces including the crack surface.
In the experiments reported in Kalthoff (1988) and Kalthoff and Winkler (1988), a

projectile is accelerated to velocities of from 10 to 100 m s- I and impacts the specimen
between the two cracks. Assuming that material near the impact surface remains elastic
and that the projectile and specimen have the same elastic properties, the impact conditions
are replaced by the imposed velocity condition (6) with VI taken to be half the projectile
velocity (as given by elastic wave theory). For numerical convenience, an initial rise time tr

is specified, which in the calculations here is fixed at 1.0 /-is.
The total rate of deformation, d (the symmetric part of F' F- 1

, where F is the defor­
mation gradient), is written as the sum of an elastic part, de, a viscoplastic part, dP, and a
part due to thermal straining, dT

,

with

d' = .Y'-I :0-, dT = :x11,

(8)

(9)

where 0- is the Jaumann rate of Cauchy stress, :x is the thermal expansion coefficient,
A: B = A'IBuand
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(10)

In eqn (10), E is Young's modulus, v is Poisson's ratio, I and I' are the second and fourth
order identity tensors, respectively, and (8) is the tensor product, (A ® B)iJk

/ = AiJB"/.
The basis for the plastic flow rule is a flow potential <1>, introduced by Gurson (1975),

that characterizes the porosity in terms of a single scalar internal variable, f, the void
volume fraction,

(11)

where it is the average flow strength of the matrix,

(12)

and ql and q2 are the parameters introduced by Tvergaard (1981, 1982). The porous plastic
constitutive relation used in the calculations actually incorporates a modification due to
Tvergaard and Needleman (1984) that models the effect of rapid coalescence at failure.
However, this modification does not become active in the analyses here.

The viscoplastic part of the rate of deformation, dP, is taken in a direction normal to
the flow potential and the constant of proportionality is determined by setting the aggregate
plastic work rate equal to the matrix dissipation giving,

[
(I - f)l1i ] 0<1>

d
P

= (1: (0<1>/0(1) 0(1' (13)

The rate of increase of the void volume fraction results from the growth of existing
voids and from the nucleation of new voids, which is taken to be strain controlled so that

j = (I-f)dP : I+~i. (14)

Initially, the void volume fraction is zero and void nucleation is taken to follow a normal
distribution (Chu and Needleman, 1980),

with EN = 0.15,fN = 0.02 and SN = 0.1.
The matrix plastic strain rate, ~, is given by

i- e(~)I/m g(e,T) = O"o[l-f3(T-To)][l+e/Eot,- g(e,T) ,

where T is the temperature and 8 = S~ dt.
Adiabatic conditions are assumed and the balance of energy gives

(15)

(16)

(17)

Here, p is the density in the reference configuration, cp is the heat capacity, and the
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Fig. 2. Matrix hardness as a function of plastic strain at various temperatures for two values of the
thermal softening parameter p.

parameter X specifies the fraction of plastic stress work converted to heat, which is taken
to have the value 0.90 (Taylor and Quinney, 1934).

The material parameters are taken to have values representative of a high-strength
steel; E = 202 GPa, v = 0.3, (Jo = 1000 MPa, N = 0.05, m = 0.0 I and p = 7600 kg
m- 3 = 7.6 x 10- 3 MPa m- 2

S2. The reference temperature To is taken as 20n e, cp = 465 J
kg-Ie-I, iY. = I X 10- 5 e- I, and calculations are carried out using both 13 = o.OOI6"e- 1

and 13 = 0.0032 e- I. Figure 2 shows the matrix hardness g as a function of plastic strain
at various temperatures for these two values of 13.

Ritchie et al. (1973) proposed a cleavage criterion based on a critical stress over a
critical distance. Other models have been developed using a weakest link theory and Weibull
statistics to develop expressions for the probability of cleavage in front of a crack tip
(Mudry, 1987). Tvergaard and Needleman (1993) used a model based on partitioning the
material into cleavage grains and assuming that cleavage failure in a grain occurs when the
volume average of the maximum principal stress over that grain reaches a critical value.
Recent calculations of Finot et al. (1994) for crack initiation and growth in the ceramic
reinforcement in metal-matrix composite materials indicate that this is a reasonable
approximation. In the present calculations, attention is confined to the very early stages of
cleavage crack growth and the onset ofcleavage is simply modeled by assuming that cleavage
failure begins when the maximum principal stress reaches a temperature independent critical
value, (Jo which is taken to be constant throughout the specimen.

The generalization of Rice's (1968) J integral for dynamic loading conditions can be
expressed as (Moran and Shih, 1987a,b)

(18)

where A is the area inside the contour r.
The mesh used for the computations is shown in Fig. 3, where each quadrilateral

consists of four "crossed triangle" linear displacement finite elements. The equations result­
ing from substituting the finite element discretization into eqn (I) are of the form

(19)

where M is a mass matrix, U is the nodal displacement vector and R is the nodal force
vector. The equations of motion (19) are integrated numerically by an explicit integration
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Fig. 3. Finite element mesh. Each quadrilateral consists of four "crossed" triangles. (a) Quadrant
analyzed numerically. (b) Inner mesh showing the location of the initial crack tip. In presenting the

numerical results, attention will focus on distributions of field quantities in this region.

procedure, the Newmark fJ-method with f3 = 0 (Belytschko et at., 1976). A lumped mass
matrix is used instead of the consistent mass matrix, since this has been found to be
preferable for explicit time integration procedures, from the point of view of accuracy as
well as computational efficiency (Krieg and Key, 1973). The constitutive updating is based
on the rate tangent modulus method of Peirce et at. (1984).

3. NUMERICAL RESULTS

The impact loading on the specimen in Fig. 1 produces a compressive wave in the
region between the two cracks. When the wave reaches the crack tip, the constraint induced
by the remainder of the specimen induces rather large shear stresses, resulting in mode II
type loading. Experiments carried out on a high-strength steel exhibited two distinct fracture
modes (Kalthoff and Winkler, 1988; Kalthoff, 1988): at low loading rates there was a
brittle cleavage mode of failure with crack growth occurring at slightly less than 70° from
the initial crack plane (positive angles are counter clockwise from the yl-axis in Fig. 1),
while at sufficiently high loading rates shear localization following a path ~ - 10° from the
initial crack plane occurred. Failure within the shear band was by ductile void growth and
arrest was observed after a certain length, seen to be about 15 mm by Kalthoff (1988). By
way of contrast, at low loading rates complete failure of the specimen took place. Thus, in
the experiments of Kalthoff and Winkler (1988) on steel and also in those of Ravi-Chandar
(1994) on polycarbonate, brittle behavior was observed at low loading rates and ductile
behavior at high loading rates--exactly the opposite of the usual brittle-ductile transition.
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Fig. 4. Traction. force per unit initial area. at the impacted surface versus time. The traction is

normalized hy the reference strength (To. In all calculations here (To = 1000 MPa.

Our calculations indicate that the observed behavior is mainly the outcome of a
competition between thermal softening-induced localization and cleavage. Porosity--induced
softening appears to play an important, but secondary, role. Here, in order to explore this
competition, calculations are carried out for two values of the thermal softening coefficient,
f3 = 0.0016C· 1 and f3 = O.003TC- 1 in eqn (16) (see Fig. 2). Since thermo-mechanical
properties are not given by Kalthoff and Winkler (1988) or Kalthoff (1988), a quantitative
comparison with the experiments is not made.

The impact velocities considered are VI = 6.5 m S·l and VI = 16.5 m S·I, which
correspond to projectile velocities of 13 and 33 m s "1, respectively. The focus here is on the
initiation of failure and the results presented pertain to a stationary crack unless specifically
stated otherwise. Because adiabatic conditions are assumed, the porosity is uniformly
distributed and the critical stress for cleavage is also spatially uniform, no material length
scale enters the formulation. There is, however, a geometrical length that affects the stress
and strain distributions near the crack tip--the crack tip radius. It is worth noting that
Kalthoff and Winkler (1988) and Kalthoff (1990) reported that the projectile velocity at
which the brittle-ductile transition occurred depended on the initial crack tip radius. Also,
for a sufficiently blunt crack tip and with a sufficiently small impact velocity no damage
was observed (Kalthoff and Winkler, 1988).

Figure 4 shows computed curves of traction versus end-displacement. The rise time of
tr = 1.0 f.1S in eqn (6) is evident in this figure and the oscillations are a consequence of the
discretization. Over the time interval considered, the material essentially behaves in a linear
elastic manner except near the crack tip. Hence, the traction versus time response in Fig. 4
is independent of the thermal softening characterization.

Curves of J. computed from eqn (18), versus time and crack tip opening, 15" versus
time are shown in Fig. 5, where the current value of 15 1 is measured at the nodal points at
which the initial semi-circular crack tip is tangent to the flat crack faces. The evolutions of
J and of 15 1 are also independent of the thermal softening characterization over the time
interval shown. The stress levels build up more quickly at higher impact velocities so that
Jincreases more rapidly for VI = 16.5 m S-I than for VI = 6.5 ill S-I. Due to the expansion
of the material between the two cracks, the crack tip opening, 15 1, decreases as the stressing
at the crack tip increases. For high enough impact velocities and small enough initial crack
openings, contact of the opposite sides of the crack faces can occur. However, this was not
observed in the computations reported here.

Contours of maximum principal stress, CTh and matrix effective plastic strain, £, are
shown in Fig. 6 for the case with VI = 16.5 m S-1 and fi = 0.0032'C- 1 at t = 10.2 f.1s. The
maximum principal stress is negative toward the center of the specimen and positive above
the initial crack line. Lee and Freund (1990) found that the maximum circumferential stress
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Fig. 5. (a) J versus time. J is defined by eqn (18) and includes both an area integral term and a

contour integral term. (b) Crack tip opening, 0" versus time.

in the linear elastic asymptotic field occurred at about 63° from the crack line. There is a
region near the crack tip in Fig. 6(a), exhibited by the 0'1 = 600 MPa contour, that is
consistent with this. There are two bands of high straining in Fig. 6(b); directly ahead of
the initial tip and at ~ - 135 0 from the initial crack plane. Note, however, that the stress
state is compressive in the band at ~ - 135 from the initial crack plane. The highest tensile
stressing in Fig. 6(a) occurs where the strains are very small and the material response is
essentially elastic. At this early stage, the field distributions are nearly independent of the
value of the thermal softening coefficient 13 and the qualitative features of the distribution
pertain to both values of impact velocity.

Figure 7 shows curves of the maximum principal stress in the material, O'l,ma" and the
maximum value of the matrix plastic strain in the material, 8ma" versus time for all four
computations. The mesh around the initial notch is not extremely fine so the specific values
in Fig. 7 may change with increased mesh resolution, but the trends are expected to be the
same. With VI = 6.5 m S-I, there is very little dependence on the value of the thermal
softening coefficient 13, because the strains are not large enough for thermal softening to
playa substantial role. On the other hand, with VI = 16.5 m s- \ 8max is larger and O'I,max is
lower for the case with 13 = 0.0032C- ' than for the case with 13 = 0.00] 6"C- ' , The dip in
O'I.maX' with a corresponding plateau in plastic strain, at ~] 8 J1S is due to the arrival of an
unloading wave, With VI = 16.5 m S-I and 13 = 0,0032°C- ' the value of O'I.max is decreasing
rather rapidly for t > 20.4 J1S,
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The maximum principal stress in the material, tT l .ma" is plotted against the maximum
plastic strain in the material, ema" in Fig. 8. The sharp drop seen in each case is due to the
unloading wave. Here, it can be seen that the value of (Jl,max for a given value of emax is
greater with the lower impact velocity, VI = 6.5 m s-I, than with the higher impact velocity,
VI = 16.5 m s' I. Also, at VI = 16.5 m S-I a peak value of (Jl,max = 1837 MPa is attained
with f3 = 0.0032C I, while with {1 = 0.0016C'1 (JI.max reaches 2000 MPa (at the end of the
time interval shown (JI.max is not increasing, but a continuation of this computation showed
that (Jlmax subsequently increased).

Figure 9 shows contours of matrix plastic strain, temperature and void volume fraction
for the case with VI = 16.5 m S-I and f3 = 0.0032"C- 1 at t = 21.9 J.1s. This is the last stage
of the computation for this case and thus is at a stage where (JI.max is falling. The plastic
strain contours in Fig. 9(a) show that the magnitude of the plastic strains in front of the
crack tip are larger than at -135. At the stage of deformation in Fig. 9, the temperature
increase is not very large except in a few highly distorted elements right near the crack tip,
and the void volume fraction is less than 0.06 throughout the specimen.

Contours of maximum principal stress, (JI, and effective strain rate, {:e, are shown in
Fig. 10. Here, i;e is defined as

(20)

where d' is the deviator of the rate of deformation. As in Fig. 6, the maximum principal
stress is above the crack tip and is negative toward the central portion of the specimen. The
high local strain rates together with the drop in (JI are indicative of the onset of the
localization of deformation. In Fig. 10(b), the maximum plastic strain rate is focused in
front of the crack tip, directed somewhat down toward the middle of the specimen, which
is consistent with the direction of localization and ductile damage seen by Kalthoff (1988,
1990). The role of the porosity-induced softening seems to be to promote focusing of the
highest strain rates ahead of the crack tip where (J, is positive, in preference to the - 1350

orientation where (JI is negative.
The region near the crack tip for this case is shown in Fig. 11. The very highly

distorted elements at the crack tip can be seen in Fig. 11 (a). The effective plastic strain, the
temperature, the porosity and the effective strain rate all take on their largest values in
these elements. The greater concentration of the strain rate ahead of the crack tip than at
-135 is also evident in Fig. ll(c). Figure 12 shows the same region as Fig. II, except that
it pertains to the case with VI = 16.5 m S-I and f3 = 0.0016C'I. Here also, t = 21.9 J.1S.
The strain rates are somewhat less localized than for the case with f3 = 0.0032'C- I

. For
example, the accumulated strain at the notch tip is smaller than in Fig. II, as can be seen
by comparing the deformed mesh plots in Figs 11 (a) and 12(a). Although the qualitative
features of the contours are the same as in Fig. II, the key difference between these two
calculations is that with f3 = 0.0032C- 1 the increased deformation rate has led to a relax­
ation of the maximum tensile stress, whereas with {1 = 0.0016'C- I no such relaxation has
occurred.

Figure 13 shows contours of matrix plastic strain, temperature and void volume
fraction for the case with VI = 6.5 m S·I and f3 = 0.0032'·C- I at t = 27.3 J.1s. The reduced
strain concentration ahead of the crack tip, and particularly at - 135, can be seen in Fig.
13(a). Figure 14 shows contours of maximum principal stress and effective strain rate for
the same case as in Fig. 13. Note that the peak strain rate contour shown in Fig. 14 is a
factor of eight smaller than the peak strain rate contour in Fig. 10. Also, note that while
the strain rate is also focused in front of the crack tip, the contours are quite differently
shaped from those in Fig. II (b) and are directed away from the center of the specimen.

Figure 15 shows results from a computation with some cleavage crack growth. Here,
VI = 6.5 m S-I and {1 = 0.0032'C' 1 and the critical stress for cleavage was taken to be
(Jc = 1900 MPa. The maximum principal stress is in front of the current crack tip. The
stress redistribution accompanying cleavage can be seen by comparing Figs 15(a) and 14(a).
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The darkened region in Fig. 15(b) shows the elements in which cleavage has occurred and
the angle of growth is ~ 65 . The focus here is on failure initiation and this calculation is
only intended to give an indication of the initial direction of cleavage cracking. The cleavage
criterion used does not contain a material length scale so that the crack speed in Fig. 15 is
mesh dependent. A more complete investigation of cleavage crack growth could be based
on the formulation in Tvergaard and Needleman (1993), which does incorporate a material
length scale. Such an investigation would also require a fine mesh along the cleavage crack
growth path.

4. DISCUSSION

The elastic-viscoplastic constitutive relation accounting for both ductile failure by
void growth to coalescence and brittle failure by cleavage in body-centered cubic metals
has been used by Tvergaard and Needleman (1986, 1988) to analyze the ductile-brittle
transition for Charpy V-notch specimens, and the same material model with the effect of
adiabatic heating due to plastic dissipation incorporated has been used to study the brittle­
ductile transition in dynamic crack growth (Tvergaard and Needleman, 1993) and in a
three-dimensional analysis of the Charpy impact test (Mathur et al., 1994). Typically, there
is a transition range, in which more rapid loading gives rise to more brittle behavior.
Experiments using the double edge-cracked specimen developed by Kalthoff (1988) to study
crack growth under rapid shear loading have also shown a transition, but in the opposite
sense so that higher loading rates tend to promote ductile behavior, and the question of
main interest in the present paper is whether or not the material model is able to explain
this opposite behavior.

Already at an early stage (Fig. 6) the computed near tip fields show higher tensile stress
levels on one side of the crack tip, where brittle cracks were observed in the experiments, and
higher strain levels ahead of the crack, where ductile crack growth was observed. Both
tendencies continue to develop (Figs 9 and 10), and if the critical stress for cleavage failure
is reached, the model leads to the prediction of brittle crack growth at an angle of about
65 from the initial crack plane (Fig. 15). So the question is, why would this critical stress
level be reached for a low loading rate and not for a high rate? The computations show a
case for a particular set of material parameters (Fig. 7), where at a high loading rate the
maximum principal tensile stress reaches a peak value and then decays rapidly, whereas at
a lower loading rate the stress value keeps increasing above this peak value. In this case the
type of brittle-ductile transition observed in the experiments (Kalthoff and Winkler, 1988;
Kalthoff, 1988) is directly predicted by the present computations. In the case of high rate
loading, where brittle failure is not predicted, the thermal softening combined with void
growth softening in front of the crack tip will eventually lead to localized shear failure in a
thin layer of material ahead of the tip, corresponding to the mode of ductile crack growth
observed in the experiments. The experiments of Ravi-Chandar (1994) on polycarbonate
suggest that this sort of opposite fracture mode transition under mode II type loading
conditions may occur quite generally when there is a competition between a strain-driven
ductile failure mode and a stress-driven brittle failure mode.

The strain rates in the highly strained region in front of the crack tip are so high, both
in the case of a high loading rate (Fig. 10) and in the case of a lower rate (Fig. II), that the
assumption of adiabatic heating is very realistic. Thus, the possibility of a stronger effect
of heat conduction at a lower loading rate cannot explain a reduced tendency for thermally­
induced localization. Heat conduction, however, may playa more significant role in affect­
ing the propagation of the shear band and the development of the ductile failure mode. On
the other hand, the high tensile stresses occur on the side of the crack tip opposite to the
side loaded by the projectile, and this development must be shielded by the growth of the
softening region in front of the tip, between the primary stress wave and the point where
the tensile stress peak develops. At the higher rate of loading this softening region grows
more rapidly, so that the tensile stress peak has less time to develop (by stress waves),
before thermal softening starts to dominate. Thus. it appears that the speed of loading,
determining the rate of build up of the thermal softening region, compared with the wave

)AS ]2 17~18-J
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speed may be an important parameter in the brittle-ductile transition found in the specimen
analyzed here.
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